A central role of abscisic acid in drought stress protection of Agrobacterium-induced tumors on Arabidopsis.

نویسندگان

  • Marina Efetova
  • Jürgen Zeier
  • Markus Riederer
  • Chil-Woo Lee
  • Nadja Stingl
  • Martin Mueller
  • Wolfram Hartung
  • Rainer Hedrich
  • Rosalia Deeken
چکیده

Crown gall tumors induced by Agrobacterium tumefaciens represent a sink that has to be provided with nutrients and water by the host plant. The lack of an intact epidermis or cuticle results in uncontrolled loss of water. However, neither the tumor nor the host plant displays wilting. This phenomenon points to drought adaptation in both tumors and the crown gall host plant. To understand the underlying molecular mechanisms of protection against desiccation the gene expression pattern of Arabidopsis (Arabidopsis thaliana) tumors was integrated with the profile of stress metabolites: Arabidopsis tumors accumulated high amounts of abscisic acid (ABA), the ethylene precursor aminocyclopropyl carboxylic acid, osmoprotectants, and form a suberized periderm-like protective layer. Suberization of the outer tumor cell layers most likely is mediated by ABA since external application of ABA induced suberization of Arabidopsis roots. However, the expression level of the classical marker genes, known to respond to drought stress and/or ABA, was lower in tumors. Instead another set of drought and/or ABA-inducible genes was more highly transcribed. Elevated transcription of several ABA-dependent aquaporin genes might indicate that ABA controls the water balance of the tumor. The retarded tumor growth on abi and aba mutant plants underlined the importance of a tumor-specific ABA signaling pathway. Taken together, we propose that ABA is an important signal for protection of tumors against desiccation and thus supports tumor development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

A Lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis.

LLA23, an abscisic acid-, stress-, and ripening-induced protein, was previously isolated from lily (Lilium longiflorum) pollen. The expression of LLA23 is induced under the application of abscisic acid (ABA), NaCl, or dehydration. To provide evidence on the biological role of LLA23 proteins against drought, we used an overexpression approach in Arabidopsis (Arabidopsis thaliana). Constitutive o...

متن کامل

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...

متن کامل

DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors

Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic ...

متن کامل

Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton

Drought is the major environmental stress that limits cotton (Gossypium hirsutum L.) production worldwide. LOS5/ABA3 (LOS5) encodes a molybdenum co-factor and is essential for activating aldehyde oxidase, which is involved in abscisic acid (ABA) biosynthesis. In this study, a LOS5 cDNA of Arabidopsis thaliana was overexpressed in cotton cultivar Zhongmiansuo35 (Z35) by Agrobacterium tumefaciens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 145 3  شماره 

صفحات  -

تاریخ انتشار 2007